18B
 Acids and Bases
 Extra Practice Problems

Using Dissociation Constants

What is the difference between a strong acid and a weak acid? We say that a solution with a lower pH is more acidic than a solution with a higher pH . Since pH is a measure of hydrogen ion concentration, it should make sense that a strong acid is one that gives more hydrogen ions in solution than a weak acid. Nitric acid, HNO_{3}, is an example of a strong acid. It completely ionizes in aqueous solution to form hydrogen ions and nitrate ions.

$$
\mathrm{HNO}_{3}(a q) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)
$$

Hypochlorous acid, HClO , is an example of a weak acid. A weak acid ionizes only slightly in water and an equilibrium is established between the unionized form and the ionized form of the acid.

$$
\mathrm{HClO}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{ClO}^{-}(a q)
$$

As in any equilibrium, we can write an expression for the equilibrium constant for this reaction. It is called the acid dissociation and has a value of $3.2 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$.

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{ClO}^{-}\right]}{[\mathrm{HClO}]}=3.2 \times 10^{-8}
$$

We could also write an equilibrium constant expression for the strong acid. nitric acid. We normally don't so this because K_{a} is so large that it cannot be measured. The basicity of a solution is a measure of the hydroxide ion concentration. As with acids, the difference between a strong and a weak base also depends on the degree of ionization or reaction with water to produce hydroxide ion. A strong base, such as sodium hydroxide, NaOH , completely dissociates into a cation and the anion, the hydroxide ion.

$$
\mathrm{NaOH}(a q) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

A weak base only partially reacts with water producing hydroxide ion. An aqueous solution of cyanide ion, CN^{-}, is a weak base.

$$
\mathrm{CN}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{OH}^{-}(a q)+\mathrm{HCN}(a q)
$$

An equilibrium constant, called the base dissociation constant, can be written for this reaction.

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right][\mathrm{HCN}]}{\left[\mathrm{CN}^{-}\right]}=2.0 \times 10^{-5}
$$

Example A

Rank these compounds in order of increasing hydrogen ion concentration: weak acid, strong base, weak base.
Solution The strong base will have the lowest $\left[\mathrm{H}^{+}\right]$; strong base, weak base, weak acid.

You Try It

1. Rank these compounds in order of increasing hyroxide ion concentration: weak base, weak acid, strong base, strong acid.

Your Solution

Example B

Write the expression for the acid dissociation constant of the strong acid hydrofluoric acid. HF.

Solution First write the equation.

$$
\begin{gathered}
\mathrm{HF}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q) \\
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}
\end{gathered}
$$

You Try It

2. Write the expression of for the base dissociation constant for hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, a weak base. Hydrazine reacts with water to form the $\mathrm{N}_{2} \mathrm{H}_{5}^{+}$ion.

Your Solution

Problems for You to Try

3. Use Table $18 \cdot 5$ in your text to rank these acids from weakest to strongest: $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, $\mathrm{HCO}_{3}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HCOOH}$.

$$
18 \cdot 8
$$

4. Write the equilibrium equation and the acid dissociation constant for the following weak acids:
a. $\mathrm{H}_{2} \mathrm{~S}$
b. NH_{4}^{+}
c. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
5. Match each solution with its correct description.
a. dilute. weak acid
(1) $18 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(a q)$
b. dilute. strong base
(2) $0.5 \mathrm{M} \mathrm{NaOH}(a q)$
c. concentrated, strong acid
(3) $15 \mathrm{M} \mathrm{NH}_{3}(a q)$
d. dilute. strong acid
(4) $0.1 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
e. concentrated, weak base
(5) $0.1 \mathrm{M} \mathrm{HCl}(a q)$
6. Write the base dissociation constant expression for the weak base analine, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$. $18 \cdot 8$

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

48 Acids and Bases

Dissociation Constants for Weak Acids and Bases

An equilibrium between the unionized and ionized forms is established when a weak acid, HA, is dissolved in water.

$$
\mathrm{HA}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

The dissociation constant expression for the weak acid, HA, takes the general form

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right] \times\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

The value of K_{a} can be calculated from the experimentally measured pH of a solution of known acid concentration. Conversely, if the K_{a} of a weak acid is known, the extent of its dissociation. and therefore, the pH of the solution can be calculated. A similar expression can be written for teh dissociation constant of a weak base, B .

$$
\begin{gathered}
\mathrm{B}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{OH}^{-}(a q)+\mathrm{BH}^{+}(a q) \\
K_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right] \times\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]}
\end{gathered}
$$

Example A

When 0.20 mol of lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, is added to enough water to make 1.0 L of solution the equilibrium hydrogen ion concentration is $5.3 \times 10^{-3} \mathrm{M}$. What is the K_{a} of lactic acid?
Solution Write the equation for the equilibrium.

$$
\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}(a q)
$$

Write the dissociation constant expression.

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right] \times\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}\right]}{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right]}
$$

At equilibrium, $\left[\mathrm{H}^{+}\right]=5.3 \times 10^{-3} \mathrm{M}=\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}\right]$

$$
\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right]=0.20 M=5.3 \times 10^{-3} M=\sim 0.20 M
$$

Substitute these equilibrium concentrations into the expression for K_{a}.

$$
K_{\mathrm{a}}=\frac{\left(5.3 \times 10^{-3} M\right)\left(5.3 \times 10^{-3} M\right)}{0.20 M}=1.4 \times 10^{-4}
$$

You Try It

1. A 0.10 M solution of formic acid has an equilibrium $\left[\mathrm{H}^{+}\right]=4.2 \times 10^{-3} \mathrm{M}$.

$$
\mathrm{HCOOH}(a q) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{HCOO}^{-}(a q)
$$

What is the K_{a} of formic acid?
Your Solution

Example B

What is the equilibrium $\left[\mathrm{H}^{+}\right]$of a 0.10 M solution of carbonic acid. $\mathrm{H}_{2} \mathrm{CO}_{3}$. The K_{a} of $\mathrm{H}_{2} \mathrm{CO}_{3}=4.2 \times 10^{-7}$.
Solution Write the equation for the equilibrium and the acid dissociation constant expression.

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{CO}_{3}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q) \\
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right] \times\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}
\end{gathered}
$$

At equilibrium, $\left[\mathrm{H}^{+}\right]=x=\left[\mathrm{HCO}_{3}^{-}\right]$

$$
\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=0.10 \mathrm{M}=x=\sim 0.10 \mathrm{~m}(\text { since } x \ll 0.10 M)
$$

Substitute into the expression for K_{a} and solve for x.

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{(x)(x)}{0.10 M}=4.2 \times 10^{-7} \\
x^{2} & =4.2 \times 10^{-8} \\
x & =2.0 \times 10^{-4}=\left[\mathrm{H}^{+}\right]
\end{aligned}
$$

You Try It

2. The K_{a} of benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$, is 6.3×10^{-5}. What is the equilibrium $\left[\mathrm{H}^{+}\right]$in a 0.20 M solution of benzoic acid?

Your Solution

Problems For You to Try

3. A 0.10 M solution of hydrocyanic acid, HCN , has an equilibrium hydrogen ion concentration of $6.3 \times 10^{-6} \mathrm{M}$. What is the K_{a} of hydrocyanic acid?
4. What is the equilibrium concentration of hydrogen ion in a $0.10 M$ solution of propanoic acid, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$? The K_{a} of propanoic acid is 1.8×10^{-5}.

Chemistry 40S
 Acid/Base Review
 Answers

Review Sheet 18B

1. Strong acid, weak acid, weak base, strong base.
2. $\quad \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<===\mathrm{N}_{2} \mathrm{H}_{5}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathbf{a}}=[\mathrm{N} 2 \mathrm{H} 5+][\mathrm{OH}-]$
$\left[\mathrm{N}_{2} \mathrm{H}_{4}\right]$
3. $\mathrm{HCO}_{3}{ }^{-}<\mathrm{H}_{2} \mathrm{PO}_{4}^{-}<\mathrm{HCOOH}<\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
4.

a. $\quad \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HS}^{-}\right]$
$\left[\mathrm{H}_{2} \mathrm{~S}\right]$
b. $\quad \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NH}_{3}\right]$
$\left[\mathrm{NH}_{4}{ }^{+}\right]$
c. $\quad \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$
5. $\begin{array}{lllll}\text { a. (4) } & \text { b. (2) } & \text { c. (1) } & \text { d. (5) } & \text { e. (3) }\end{array}$
6. $\mathrm{K}_{\mathrm{b}}=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right][\mathrm{OH}-]$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right]$
Review Sheet 18C

1. $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4} \mathrm{M}$
2. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.6 \times 10^{-3} \mathrm{M}$
3. $\mathrm{K}_{\mathrm{a}}=4.0 \times 10^{-10}$
4. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.3 \times 10^{-3} \mathrm{M}$

